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ABSTRACT 

For amenable groups that have a F~blner sequence {An } satisfying 

l-~mlA~l An[/IAnl < +oo 

we show that a subsequence ergodic theorem is valid for the visit times to 

a set of positive measure. 

In the last few years a great deal of progress has been made in the study of point- 

wise subsequence ergodic theorems. Most of the results deal with subsequences 

that are specific to the integers but the following result of Bourgain [BFKO] may 

be formulated in more general settings. 

I f (X ,  B, p, T) is ergodic and B E 13 has positive measure then [or a.e. xo E X, 

the sequence {n E N: Tnxo E B} is a good sequence for the Birkhoff ergodic 

theorem. 

Our main goal here is to give an extension of this result to that class of 

amenable groups for which we have a good understanding of Birkhoff's theo- 

rem (cf. [OW]). We shall adopt the method found by Furstenberg, Katznelson 

and Ornstein to prove Bourgain's result and adapt it to the group setting. At the 
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same time, we shall discuss in greater detail the nature of the set of z0 for which 

Bourgain's result is valid. This discussion, which we carry out for Z in §1, serves 

as an introduction to these ideas and supplements the presentation in [BFKO]. 

In particular, for many transformations T, the good set of z0 may be identified 

as the generic points for the set B, but in general that property is not sufficient. 

In §2 we discuss the L2-theory and describe the class of groups for which we can 

prove our main result and in §3 we give the main result. 

1. Generic Sequences 

For an ergodic finite measure preserving transformation (X,B,/t, T) and a set 

B E B a point x0 E X will be called gener ic  if 

rt--1 

lira 1 Z 1B(T'zo) = / J (B)  
n-.-* O0 n 

o 

and the same holds also for all sets B'  in the a lgebra  generated by B, namely: 

N 

U V T ' { B , X  \ B}. 
N - N  

As usual, we denote the common refinement of partitions (or algebras) by V. 

A generic point for a set B carries with it enough information to recover the 

process defined by B, and it is a natural condition to impose on a point if one 

is interested in the dynamics of T with respect to B. By the ergodic theorem 

#-a.e. point is generic for B. We begin by describing a proof of the following 

result which was found by us more than ten years ago in discussions with H. 

Furstenberg, M. Keane and J. P. Thouvenot. 

THEOREM 1: If (X,B,#,T)  has completely positive entropy, B E B with 

positive measure and zo E X is generic for B then the sequence nl < n2 < n3 < 

• .. of times o[ successive visits of xo to B is a good sequence for the Birkhoff 

ergodic theorem, i.e. for any t~nite measure preserving system (Y,C, G S) and 

f E L l  we have 

K 

(1) ~'-~o~lim ~ ~ - ~ f ( T " k y ) = / f d v  
k = l  
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/'or u-a.e, y E Y. 

By the visit times of x0 to B we mean: 

n l  = r a i n { / >  0: Tixo E B}, 

n2 = min{i > nl: Tixo E B}, 

etc. Before proving the theorem let's remark that since x0 is generic, the sequence 

{ni} has positive density and hence it is trivial to deduce a maximal inequality 

for the operators 

k=! 

from the classical maximal inequality. 

By standard techniques (el. an extensive discussion in [BL]) it suffices therefore 

to find a dense set of functions in L~(Y,C,u) for which (1) is valid. This is in 

contrast to the situation one faces when proving the classical ergodic theorem. 

There the main difficulty lies precisely in establishing a maximal inequality since 

functions of the form g(Sy)-g(y), g E Loo form a natural class for which the usual 

averages converge a.e. (and in fact uniformly). It is this feature which greatly 

simplifies the discussion of good positive density sequences. When the sequence 

has zero density like {n 2 } or { primes } establishing a maximal inequality becomes 

a major hurdle. 

Proof of Theorem 1: a) If (Y, S) is a Bernoulli shift then if P is an independent 
N 

generating partition, any L1 function f measurable with respect to V SiP has 
- - N  

the property that 

sm°f, sm'f, sm2f,... 

are independent provided that the gaps mk+l - mk all exceed 2N + 1. As a result 

of this, the sum in (1) will decompose into a finite number of sums of independent 

functions and the classical strong law of large numbers implies that (1) is valid. 

Since functions of this type are dense, as we've remarked this implies (1) for all 

f E L l .  
Note that for this case, there is no need to impose any conditions on the 

sequence {nk} except that it have positive density. Observe also that  (Y, S) 

didn't  have to be Bernoulli for this argument; it would have sufficed for the 

spectrum of (]I, S) to be Lebesgue. 
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b) If (Y, S) has zero entropy let f be any finite valued function and yo any 

point that is generic for f .  This means that for any C in the S-invariant algebra 

generated by f 
n- -1  

lim -1 ~ 0  1a(SJY°) = •(C). 
1"8"--.OO n 

Consider now the sequence of pairs 

wo -- {1B(T~zo), . f (Siyo))} ,  i = 0 ,1 ,2 , . . .  

as a point in a symbolic shift space. Explicitly, if F denotes the values that  f 

assumes, we are looking at w0 as a point in 

-- {{0,1} U F} N--{0,1} N × F  N 

on which the shift a is defined. 

Denote by p0 the measure that p defines on (0,1} N via the map 

x {1B(T'x)}, 

and by v0 the measure on F N that v defines via y ~ { f ( S i y ) } .  If we show that  

1 N-1 
(2) ~ ~ ~,,~o 

converges in the w*-topology to p0 x v0 then (1) will follow immediately. Note 

that our hypotheses on the genericity of x0 and Y0 are precisely that  

N - 1  

j=O 
N - 1  

j--0 

where 7rl, ~r2 are the projections of f /on to  {0,1} N and F N respectively, and al ,  a2 

denote the shifts there. 

Let A be any duster  point of the measures (2). Clearly A is a-invariant and 

~IA = p0,1r2A = v0. Now we use the hypothesis that iX ,  T)  had completely 

positive entropy and invoke the disjointness theorem of Furstenberg IF] to deduce 

from this that A = p0 x v0. 
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c) In cases a) and b) we've treated the two extremes of Bernoulli shifts on 

the one hand and zero entropy on the other. Not all transformations can be 

represented easily as a product of such transformations but it is the case that  

positive entropy arises from Bernoulli shifts since any transformation (IF, C, v, S) 

of finite entropy has a factor, i.e. an S-invariant sub-a-algebra Co such that: 

(i) (Y, Co, v, S) is Bernoulli, 

(ii) h(Y, C, v, S) = h(Y, Co, v, S), 

where h is the entropy. It is easy to give a relativized version of the disjoint- 

hess result that we quoted in b) and in this way we prove (1) for all ergodic 

transformations. 

It was natural to suppose that Theorem 1 would be true for all ergodie trans- 

formations. In Bourgain's original proof, as well as in [BFKO] conditions stronger 

than mere genericity were used for x0, and in fact one cannot extend Theorem 

1 to all processes. That one needs a formally stronger condition one sees by 

applying (1) to (X,T)  itself with f = lB. Call a point x0 sel f  s a mp l i n g  if for 

~-a.e. x 

N 
(3) li~moo N ~ 1B(Tix°) lB(Tix)=  , ( B )  2. 

1 

This condition is clearly necessary for x0 to be a good sequence and in [BFKO] 

it is shown to be sufficient! 

It turns out that being generic doesn't imply (3) so that Theorem 1 cannot be 

extended to all transformations. Here is a very simple example illustrating this. 

Exaznple: Let (X,T) be a transformation with - 1  in the spectrum, so that  

there is a set B of measure I with #(TB N B) = 0. A point x0 that visits B at 

the following times i: 

if (2n)[ < i < (2n q- 1)! and i is even, 

if (2n + 1)[ < i < (2n + 2)! and i is odd, 

will be generic for B, but for a.e. x, (3) will fail to hold. If such a point z0 is 

not in X it may be added to X (with a suitable modification of B) so that the 

desired example is achieved. 

Note that this example has some discrete spectrum. Similar examples can be 

constructed with any discrete spectrum but what happens in the weakly case is 

not clear. It is possible that then mere genericity would be enough but we have 

not settled this question. 
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Finally one last observation about what one can get from genericity. To keep 

the formulation simple let's suppose that T is weakly mixing and that  ~o is a 

finite valued function with zero mean. Then if x0 is generic for ~o we have the 

following self sampling condition in the mean: 

For e > 0 fixed, 

{1N1 } 
Nh~m°°# Y: ]-N ~o ~(Tiz°)~(TJY)] < e = 1. 

We leave a proof of this fact as an exercise to the interested reader. 

2. T h e  L 2 - t h e o r y  

Since we will be using the pointwise ergodic theorem we need a class of groups 

for which we have one available. We shall work with the following class of groups 

that includes finitely generated abelian groups, and consists of those groups G 

which have a sequence of finite sets satisfying 
OO 

(1) & c A2 c . . . ,  U-4- = G, 
1 

(2) for all g E G, lim I g A . A A . I / I A . I  = O, 
n - - ~  CO 

(3) there is a constant M for which 

[A~IA,[ _< MIA,] for all n. 

The first two conditions say that G is amenable whereas the third was intro- 

duced by Tempelman in order to prove a generalization of Birkhoff's theorem. 

For a brief proof of his result see [OW]. It says that if G satisfies (1)-(3) and G 

acts in a measure preserving fashion on a finite measure space (X, B, #) then for 

all f E LI (X)  we have 

1 

gEAn 

where ] (x )  is the projection of f onto the G-invariant functions. An L2-version is 

easy to prove even without condition (3) by decomposing L2(X) into the linear 

space spanned by functions of the form q(goX) - 9(x) for fixed go E G and 

~, E L ~  and its orthogonal complement, which one identifies as the G-invariant 

functions. 
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A sequence c(g) E {0, 1} G is called a g o o d  L2-sampl ing  s e q u e n c e  if for any 

(x ,  G) as above and any S L2(X) 

gEAn L~ 

for some linear operator Q. Our goal in this section is to show that for any 

ergodic (Y,C, •, G) and set B E B of positive measure, for almost every y E Y 

c(g) = 18(gy) 

is a good L2-sampling sequence. We work with positive density sequences so that 

we can keep the normalization P~-~" We can replace 1B by any L °° function b 

and we shall do so. Although this L2-result is weaker than what we shall get in 

the next section, the proof is more elementary and on the way we will also get 

an extension of a classical theorem of N. Wiener. Let's recall his result, which 

was that for a measure preserving transformation T of (]I, C, v) and f E L1 there 

is a set of y of full measure in Y such that 

n 

1 ~ - ~ $ n f ( T , y  ) 
(2) 2N + 1 

- N  

converges for all complex )~ of unit modulus. The important feature here is that 

the set of all )~'s is not countable; and hence even though it's easy to see why 

(2) converges for fixed X and a.e. y it requires an argument to get the y's to be 

independent of A. 

Now for f equal to 1B, f (Tny )  being a good L2-sampling sequence will require 

(1) to hold for all rotations. Considering characters on S 1 this leads to a result 

like Wiener's. It follows from this discussion that the main result we are after 

essentially implies Wiener's Theorem, and we turn now to a discussion of its 

analogue in this more general setting. 

The group rotations will be replaced by homomorphisms 8 from G to a finite 

dimensional unitary group Ud and the resulting action gu = 8(g). u, u E Ud, g E 

G. The invariant measure is Haar measure on Ud. Let 7~ be any continuous 

function on Ud. We want to show that 

(3) lim ~ ~ ~(O(g)u)c(g) exists for all u E Vd. 
n- - -*OO I.~,, I gEAn 
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Let U be the closure of 8(G) in Ua. On each eoset of U we can think of ~ as 

being a separate continuous function. It therefore suffices to show that (3) holds 

for all u E U. Now (U, 8, G) is ergodic with Haar measure the invariant measure. 

We will need a 

LEMMA: ~ the product action (U, 8, G) x (Y, C, v, G) is ergodic then there is only 

one G-invariant measure on U x Y that projects onto v on Y. 

Proo£" Let A be such an invariant measure and let A "° be defined by 

/ FdA"° = / f F(uuo,u)d (u,y). 
U x Y  

Since we act with U on itself from the left this A,0 is G-invariant and once again 

projects onto v. 

Defining 
f 

= /An°duo 

U 

one sees that A again projects onto v and then one checks that in fact A is the 

product measure du x u. Finally, for any positive continuous function ¢ on u 

= f ¢(u) A'd= 

is absolutely continuous with respect to X, and since A is ergodic, by assumption, 

it follows that for all ¢ 

whence it follows that for almost all u, A" = A and since A~ is w*-continuous in 

u it follows that A itself equals A as required. | 

Let now y E Y be a generic point for some algebra of bounded functions that  

contains b and is dense in L2. By the pointwise ergodic theorem these points 

have full measure. Now we need to know when (V, 8, G) × (Y, C, v, G) is ergodic. 

The answer is: when the representation of G on u doesn't occur in the standard 

representation of G on L2 (Y, C, v). To see this one simply considers 

f(y) = / ¢(u)X(ul )du 
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where I is a bounded invariant function on U x Y, and then notices that trans- 

forming f by g is the same as transforming ¢ by 8(g). Thus a non-constant I 

will give rise to finite dimensional invariant subspaces for G on Y. In any event 

the main point we need is that one can list a countable number of such repre- 

sentations (Ui, 8j, G) that exhaust the list in the sense that for any irreducible 

representation (U, 8, G) not in the list we always are in the position of the lemma. 

For each of the U i's, considering a dense countable set of continuous functions 

on U i we can impose more conditions on y, stay in a set of full measure and have 

(3) hold. 

Finally for the uncountable collection of (U, O)'s for which the lemma holds we 

argue as follows: For any u G U and y a generic point as above look at the pair 

(u, y). It is quasi-generic (along some subsequence vi --* oo of the An's) for some 

invariant measure A on U × Y. Since y is generic, A satisfies the hypothesis of the 

lemma and we conclude that A --- du × v. Since this holds for all limit points we 

have that (u, y) is actually generic for product measure and this clearly implies 

(3). We have proved. 

THEOREM (after N. Wiener): If(Y, ¢, u, G) is ergodic and b is a bounded function 
then there is a set of full measure of y E Y for which 1 EaeA.  ¢p(O(a)u)b(gu) 
converges for all finite dimensional unitary representations 8 of G into U~ (all d), 

all continuous functions ~ on Ud and all u E Ud. 

Now to see that when y satisfies the theorem (and is a generic point for 

(Y,C,z,,G), and the function b) (1) also holds one considers now an arbitrary 

ergodic (X, B, v, G), and decomposes L~(X) into H0, the space spanned by the 

finite dimensional invariant subspaces and H1 the orthogonal complement. On 

H0 the theorem we have just established gives (1) while for H1 we have the weak 

mixing theorem of H. Dye [D]. According to this result we have convergence of 

the averages of f E H1 taking place as though the product action on X × X were 

ergodic. This implies that 

( / ) '  l i m  id,,i------- ~ E f(x)f(glg~lx)d#(x) = 0 
gl ,g~ EAn 

and this will persist after multiplying f(gx) by b(g) for any bounded sequence 

c(g). Recombining this gives (1) with  Q f  = o. Thus  on H1, Q = 0 while  on  

H0, Q is the limit of the linear operators ~-~ ~'~g~a. f(gx) and thus we have 

established: 
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THEOREM 2: If  (Y ,C ,v ,G)  is ergodic and b: Y --* C a bounded measurable 

function, in particular 1B for a measurable set B, then for a.e. y E Y, c(g ) = b(gy ) 

defines a good L2-sampling sequence. This means that for any measure preserving 

action (x, 13, G) and any f L (X) 

l i n~  ~ f (gx)c(g)  - Q f  = 0 

g L2 

for some linear operator Q. 

For any weakly mixing (X, G), Q - 0. If (Y, G) is weakly mixing then one can 

identify the good y's (or at least a subset of them) as the points that are generic 

for some separating algebra that includes b. 

Remark: Note that even though the L~-ergodic theorem holds for all Ff lner  

sequences our L~-sampling theorem requires the pointwise ergodic theorem. In- 

deed applying the theorem, as stated, to the trivial one point space gives that 

the averages of the b(gy) exist for a.e. y, which is exactly the pointwise theorem 

for bounded functions. 

3. T h e  Po in twise  T h e o r y  

The discussion of the previous section allows us to restrict our considerations 

here to bounded functions that are orthogonal to the discrete spectrum. By the 

results of Dye [D] this means that we may assume that for a.e. (x, x ')  in X × X 

(with respect to product measure) 

1 
(1)  i2o ° b(gx)b(gx' )=0  

flEA. 

We fix throughout this section an ergodic action (X, •, p, G), and a bounded 

function b orthogonal to the discrete spectrum of the action, and a generic point 

x for b for which (1) holds for a.e. x *. Our goal is to prove that for any measure 

preserving system (Y,C, u, G) and f E LI(Y,C,  u) we have 

(2) lira 1 e~A. b(gx)f(gy) = 0 u -  a.e.y.  n~OO ~ fl 

Having established this, if we take 1B for B E B and decompose it into bl + b2 

where bl lies in the space with discrete spectrum and b2 is orthogonal to it 
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we will conclude that for a.e. x 1B(gx) is a good sampling sequence for the 

pointwise ergodic theorem. Note that in this decomposition bl is bounded since 

the projection onto the discrete spectrum is a conditional expectation operator, 

and hence b2 = b - bl is also bounded. As we've already observed a maximal 

inequality holds since b is bounded and thus it suffices to prove (2) for bounded 

f .  Also the standard ergodic decomposition shows that it suffices to prove (2) for 

ergodic actions (Y, G). Our proof will be by contradiction. Assume, therefore, 

that  for some ergodic (Y, G) and bounded function f ,  the lim sup of the expression 

in (2) is positive for a set of positive measure. It follows that for some constant 

e > 0 and set of positive measure C C Y 

1 
limsup,._.oo - -  ae~A.IA,,[ b(gx)f(gy) _> e all y E C. 

Thus for y E C, there are infinitely many different ni's for which 

1 
(3) Ig, ,]  E b(gx)f(gy) > el2. 

gEA.~ 

By the ergodicity of (]/, G) a.e. y E Y visits C in a set of positive density of 

g's. The basic idea of the proof is to use this fact together with the self sam- 

pling property of b(gx), (1), to construct-- for a typical y E Y--many different 

multiplier sequences bj(g) such that 

1 
(4) ]A.I E bi(g)f(gY) > e/2 

gEA. 

and such that the bj(g)'s are almost orthogonal. This yields a contradiction via 

a standard averaging argument. For y E C, one such multiplier sequence is of 

course the basic one--b(gx). We shall first explain how to get more multiplier 

sequences, and then go on to get them to be almost orthogonal. This first part 

is a simple variation on the arguments in JOWl. 

First determine an no such that 

where e > 0 is a small number whose size will be determined later. Ifgly E A.oC 

then for some go E A.o, yo E C, g~l gl y = yo and then for infinitely many ni's we 
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have b(gx),g E Ant defining a multiplier sequence for f(hy), for h E (A.,gol)gl. 
A typical y will visit A.oC with frequency at least 1 - 2e. For such a y, fixing 

some very large N,  we have for (1 - 2e)-most g E A. ,  many choices of a set of 

the type (A.~gol)g on which we get a good multiplier sequence. Since the g0's 

range over a fixed set A,~0, we can pass to a subsequence of the An's and ensure 

that for n < fi, g0,g0 E A.°,  

Ango 1 C A~go 1. 

Then we can apply the basic disjoint/f/cation argument of [OWl (see the proof 

of 1emma 4 there) to conclude that we can find centers gl,gz,. . .  ,gL and go,i ~- 

Ado, ni 's such that: 

(i) A. ,g~gi  are disjoint, 1 < i < L. 
L 

( i i )  ] U I An,gf,,~9/ > (1 - 3E)IANI. 
i=1 

(i/i) 1 r ~  E b(gx)/(gg~Jg~) > ~/2,1 < i < L. 
g E A n  i 

We may assume that f is bounded by one, and then defining c(g) on each 

A, ,g~gi  as in (i/i) and 0 elsewhere we get a c(g) such that 

1 2(1 3~). (6) [ANI E c(g)f(gy) > - 
g~A~r 

At the cost of another e, standard measurability arguments will give that in 

addition, if a lower bound to the indices ni is specified, we can also specify some a 

priori upper bound for them such that the above is possible for any N sufficiently 

large. We are ignoring the edge effects that arise from the translate of the An, 's 
going outside AN, as we may do if N is chosen sufficiently large. 

Next we explain how to make such a multiplier sequence almost orthogonal to 

b(gx). 
Our assumption on the self sampling of x means that there is some M6 and 

set E6 of x's such that #(Es) > 1 - ~ and for all x ~ E E6 and all m >_ M8 

(7) ~ ~ b(9~)b(J) < ~. 
gEA,n 

In the above construction we take always for a lower bound on the ni 's a number 

that exceeds M6, call it M1 and let R1 be an upper bound for the indices ni as 
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described above. Let E6(R1) denote that set of x"s  such that (7) holds for all 

ra E [M1,R1]. Since z is generic for b(y), if AN is large enough, 

(8) {g AN: gx E , ( R I ) }  > 1 - 26. 
IA~l 

Return now to the way we constructed the centers -1 go,i gi and observe that  if 

is chosen so that  ~lAno I < ~ then, at the cost of one more e, we can ensure 

that the centers -1 go,igi that we use are such that -1 go,igix E E6(R1). Doing so 
-1  will guarantee that the c(g) that we defined for g E A,~go,igi will be almost 

orthogonal (up to $. IAn, I) with b(gx) there. 
These are the basic ideas. To actually get a contradiction we need to get many 

(the number needed to get a contradiction depends on the size of e, and can 

be specified at the outset) such c(g)'s all mutually almost orthogonal. Here is 

how to get one more. With (M1, R1) specified as above let M2 be large enough 

so that  for N >_ M2 (8) is already valid. In the first step of the construction 

above let M2 be a lower bound for the indices ni and find now an upper bound 

R2 so that a c2(g) may be defined like c(g) was before. First construct c2(g) 
(almost orthogonal to b(gx)) just like we constructed c(g). Thus c2(g) is built 

up of disjoint blocks of translates of An~, M2 _< ni _< R2 where we use b(gx) for 

g E A,,~. We arrange as before that  v2(g) is almost orthogonal to the centered 

b(gx),g E AN. 
After constructing c2(g) we go back to making c(g) with disjoint translates of 

An,,M1 <_ ni <_ R1. Now we require of the centers that they fall on good g's 

(i.e. gx E E~(Ri)) for the basic A/v, and also for the translates of the An,'s, 
M2 <_ ni _< R2 that  define c2(g). Since M2 was chosen large enough these places 

also have very high density so once again at the cost of some e's we get c(g) 
almost orthogonal now to both c2(g) and b(gx). 

The general procedure is first to go up K times defining the intervals 

(M,,  R1), (M2, R~) , . . . ,  (MK, RK) 

and then construct the ci's beginning with cK and going down. Since K is known 

in advance the 6 can be chosen sufficiently small at the outset to absorb all the 

errors, and we get finally for a typical y, K sequences ci(g) such that: 

(a) 1 
IANI ~ c~(9)f(gy) > e/lO, 

gEAN 
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(b) 

Form now 

and calculate 
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1 1 
IANI ~ ci(g)eJ(g) < -K' 

gEAN 

1 K 
= -ff c , (g)  

1 

i • j .  

1 2 1 

gEAN 9 t i~j  ~EAN 

1 K ( K -  1)  1 . [AN[ 
<_ -~ . [AN[ + K2 • -~ 

2 
<_ -~[AN[ 

by (b). But from (a) we get 

1 e 

[AN[ ~ ~(g)f(gY) >- 1-0 
gilA,, 

and the Cauchy-Schwartz inequality will give a contradiction for 

<]-6"  

Isr. J. Math.  

This is the desired contradiction and we have established our main result: 

THEOREM: If G is an amenable group with a FClner sequence A ,  satisfying 

lim sup IAXIA"[ - -  < - b o o  
IA.I 

then for any ergodic (X,/3, ~, G) and bounded function b, for a.e. x E X the 

sequence b(gx) is a good L 1 -sampling sequence, i.e. for any measure preserving 
(Y, C, v, G) and f E L I (IT, C, v) 

1 
IAN[ E b(gx)f(gy) 

gEAN 

converges for y-a.e, y E Y. 
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